iQ Series
AUTOMATION IN MIND
ULTRASONIC POWER SUPPLY

AiM™

AUTOMATED
HAND PROBE
PRESS

Dukane Part No. 403-611-02
Copyright © 2020 Dukane
2900 Dukane Drive
St. Charles, IL 60174 USA

Notice of Rights:
All rights reserved. No part of this manual including the interior design, cover design and icons may be reproduced, transmitted or utilized in any form or by any means, electronic, mechanical, photocopying, recording, or by any information storage and retrieval system, without written permission from Dukane.

Notice of Liability:
The information contained in this manual is distributed on an “As is” basis, without warranty. While every precaution has been taken in the preparation of this manual, Dukane shall not have any liability to any person or entity with respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by the instructions contained in this manual, or by the hardware products described herein.

Specifications subject to change without notice.

This user’s manual documents product features, hardware, and controls software available at the time this user's manual was published.

Printed in the United States of America.

Dukane Part Number: 403-611-02

Dukane ultrasonic equipment is manufactured under one or more of the following U.S. Patents:
(* = Inactive)
3,780,926 * 4,131,505* 4,277,710* 5,798,599* 5,880,580* 6,984,921* 7,225,965 7,475,801, 7,819,158, 8,052,816, and 10,710,310.
Revision History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Revision Summary</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 00</td>
<td>Original release.</td>
<td>March 28, 2019</td>
</tr>
<tr>
<td>- 01</td>
<td>Added patent number 10,710,310 on Pg. ii.</td>
<td>January 25, 2020</td>
</tr>
<tr>
<td></td>
<td>Changed Sound Caution note on Pg. 5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added Optional Power plugs on Pg. 9.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added No Cords pictures on Pg. 10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added DC Power Information on Pg. 10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added 380/480 VAC Line Wiring Information on Pg. 11.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added Descriptions to J5 Pins 14 and 15 on Pg. 20.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added Alarms table on Pg. 31.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added MPC-E note and link to pg. 32.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added additional outline drawings on Pgs. 42-45.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revised AC Power Requirements table on Pg. 47.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revised Model Number chart on Pg. 48.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revised Regulatory Agency Compliance on Pg. 49.</td>
<td></td>
</tr>
<tr>
<td>- 02</td>
<td>Added SCCR to Pg. 6.</td>
<td>April 6, 2021</td>
</tr>
</tbody>
</table>
Contents

Section 1 - Introduction, Health and Safety
- General User Information ... 3
- General Considerations .. 4
- Plastics Health Notice .. 5
- Electrical Safety ... 5

Section 2 - Installation
- Connecting Cables .. 9
- Proper Handling of Cable Slack 13

Section 3 - Standard Connections
- Bottom Panel Layout Overview 17
- AC Power Inlet Panel .. 17
- System Inputs/Outputs Connector 18
- Ultrasound Output Connector ... 23
- Ethernet/IP Port Connector .. 24
- USB Port Connector .. 24
- \textit{iQ Commander}TM 25

Section 4 - Standard System Status and Controls
- Status LED ... 29
- Alarms .. 31
- Multi-Point Control (MPC) Interface 32
- \textit{iQLinQ}TM .. 34

Section 5 - Contacting Dukane

Section 6 - Specifications
- Generator Drawing ... 41
- Operating Environment .. 46
- AC Power Requirements .. 47
- Interpreting the Model Number 48
- Regulatory Agency Compliance 49
SECTION 1

Introduction
Health and Safety

General User Information 3
Read the Manual First. 3
Notes, Cautions and Warnings 3
Drawings and Tables 3

General Considerations 4

Plastics Health Notice 5

Electrical Safety 5

Domestic Power Grounding 6
International Power Grounding 6
Short-Circuit Current Rating 6
General User Information

Read This Manual First
Before operating your ultrasonic generator, read this User’s Manual to become familiar with the equipment. This will ensure correct and safe operation. The manual is organized to allow you to learn how to safely operate this generator. The examples given are chosen for their simplicity to illustrate basic operation concepts.

Notes, Cautions and Warnings
Throughout this manual we use NOTES to provide information that is important for the successful application and understanding of the product. A NOTE block is shown to the right.

In addition, we use special notices to make you aware of safety considerations. These are the CAUTION and WARNING blocks as shown here. They have important information that, if ignored, could have increasingly severe outcomes. These statements help you to identify and avoid hazards and recognize the consequences. One of three different symbols also accompany the CAUTION and WARNING blocks to indicate whether the notice pertains to a condition or practice, an electrical safety issue or a operator protection issue.

Drawings and Tables
The figures and tables are identified by the section number followed by a sequence number. The sequence number begins with one in each section. The figures and tables are numbered separately. The figures use Arabic sequence numbers (e.g. 1, 2, 3) while the tables use roman sequence numerals (e.g. I, II, III). As an example, Figure 3-2 would be the second illustration in Section 3 while Table 3-II would be the second table in Section 3.
General Considerations

Please observe these health and safety recommendations for safe, efficient, and injury-free operation of your equipment.

Proper Installation - Operate system components only after they are properly installed.

No Unauthorized Modifications - Do not modify your system in any way unless authorized to do so by Dukane. Unauthorized modifications could cause equipment damage and/or injury to the operator. In addition, unauthorized modifications will void equipment warranty.

Keep the Cover On - Do not remove any equipment cover unless directed to do so by Dukane. The generator produces hazardous electrical voltages which could cause injury.

Grounded Electrical Power - Operate this equipment only with a grounded electrical connection.

See Electrical Safety for grounding instructions, Page 5.

Comply with Regulations - You may be required to add accessories to bring the system into compliance with applicable regulations (OSHA in the USA) for machine guarding and noise exposure.

Use Eye Protection - Wear ANSI approved safety impact goggles.

Acoustic Stack Hazard - When an acoustic stack (transducer, booster, horn and tip) is energized by the ultrasound signal, it presents a potential hazard. Stay clear of an energized stack.

System E-STOP (Abort) Switch - Install a system E-STOP (abort) switch at each operator station when ultrasonic plastic assembly equipment is used with automatic material handling equipment in an automated system.

NOTE

These recommendations apply to the welding system. System in this manual refers to a complete group of components associated with the welding of parts, also known as an ultrasonic assembly system. Typical of the iQ Series AiM™ system consists of the iQ generator, cables, transducer, booster, horn, and fixture.

WARNING

Any fixture manufactured by a third party must comply with all OSHA and ANSI requirements. All fixtures must be guarded as necessary. Dukane does not assume any responsibility or liability for fixtures manufactured by the customer or any third party manufacturer.

WARNING

Never operate the generator with the cover off. This is an unsafe practice and may cause injury.

CAUTION

At some time you may be asked to remove equipment covers by the Dukane Service Dept. personnel. Before doing so, disconnect the unit electrically from the incoming line AC power.

Continued
General Considerations

System Electrical Cabling - Electrical power must be off when connecting or disconnecting electrical cables.

Do Not Wear Loose Clothing or Jewelry - They can become caught in moving parts.

Stay Alert - Watch what you are doing at all times. Use common sense. Do not operate the press when you are tired or distracted from the job at hand.

Do Not Operate the Equipment - Your judgement or reflexes could be impaired while taking prescription medications. If so, do not operate the equipment. Be familiar with warning labels and recommended activity restrictions that accompany your prescription medications. If you have any doubt, do not operate the equipment.

Plastics Health Notice

Certain plastic materials, when being processed, may emit fumes and/or gases that may be hazardous to the operator’s health. Proper ventilation of the work station should be provided where such materials are processed. Inquiries should be made to the U.S. Department of Labor concerning OSHA regulations for a particular plastic prior to processing with Dukane ultrasonic equipment.

Electrical Safety

The iq Series generator provides the operating power and power returns. Make sure the generator is grounded properly.

In addition to the safety considerations, proper grounding is essential for the effective suppression of RFI (Radio Frequency Interference). Every generator contains a RFI filter which blocks noise on the AC power line from entering the generator control circuitry. This filter also prevents ultrasonic RFI from being fed back into the AC power line.

Always connect the included ground wire from the PE ground of the generator to the nearest grounded metal pipe or equivalent earth ground by means of a ground clamp.

CAUTION
See TUV test report number 31370614.003 for more detail on specific model numbers and frequencies.

WARNING
Keep head, hands, limbs and body at least six inches (152 mm) away from an operating press/thruster. A vibrating, descending horn can cause burns and/or crushing injuries.

CAUTION
When making cable connections to system equipment or disconnecting cables from system equipment, make sure electrical power to the system is turned off, and AC power cords are removed from their receptacles. After the cables have been securely connected and the connections and cable routing checked a final time, the power may be restored.

Continued from Previous Page
Electrical Safety

Domestic Power Grounding

For safety, the power cords used on this product have a three-wire, grounding-type power cord. Figure 1-1 illustrates the appropriate electrical outlet to use with the power cord that is included with systems shipped to North America.

![Figure 1-1 Example of 220/240 Volt, Grounded, 3-Prong Receptacle](image)

International Power Grounding

The power cable normally provided for international use is compatible with the power outlet used in many Continental European countries (Refer to Figure 1-2). However, if your application requires another type of power cord, check with your equipment supplier, and follow local regulations concerning proper wiring and grounding.

![Figure 1-2 International 220/240V Grounding](image)

Short-Circuit Current Rating

The SCCR (Short-Circuit Current Rating) value is the maximum short-circuit current an electrical component can safely withstand without causing a shock or fire hazard. For integration into an electrical control panel/cabinet, some customers require the generator SCCR rating. The iQ generator include a AC line circuit breaker that has a SCCR rating as indicated below.

For generators rated between 700-2600 watts of output power, the SCCR rating is 250 Amps. For generators rated 3600 watts and above, the SCCR rating is 1500 Amps.

![CAUTION](image)

CAUTION

If you have a two-prong electrical receptacle, we strongly recommend that you replace it with a properly grounded three-prong type. Have a qualified electrician replace it following the National Electric Code and any local codes and ordinances that apply. See Figures 1-1 and 1-2.

![CAUTION](image)

CAUTION

If there is any question about the grounding of your receptacle, have it checked by a qualified electrician. Do not cut off the power cord grounding prong, or alter the plug in any way. If an extension cord is needed, use a three-wire cord that is in good condition. The cord should have an adequate power rating to do the job safely. It must be plugged into a grounded receptacle. Do not use a two-wire extension cord with this product.
SECTION 2

Installation

Connecting Cables ... 9
 AC Power ... 9
 DC Power .. 10
 Wiring Information for 380/480 VAC 3 Phase Lines 11
 Automation Controlled Probe System 12
 RFI Groundings ... 13

Proper Handling of Cable Slack 13
 Coil Extra Slack ... 13
 Avoid Excessive Bending ... 13
This page intentionally left blank
Connecting Cables

Details about the various system connectors and their pin assignments are covered in Section 3.

The connections are the same for both the vertical and horizontal generator configurations. However, the panel location of the connectors differs between the two chassis styles.

AC Power

Detached Cords

The AC line cords supplied with the standard generators are matched to the ultrasonic output power rating and the continent of specified use. See Table 2-1.

<table>
<thead>
<tr>
<th>Continent of Use</th>
<th>Power Cord Part Number</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>200-1109</td>
<td>120V, 15A</td>
</tr>
<tr>
<td></td>
<td>200-1110</td>
<td>240V, 15A</td>
</tr>
<tr>
<td>Continental Europe</td>
<td>200-1111</td>
<td>240V, 16A</td>
</tr>
</tbody>
</table>

Table 2-1 Standard IEC AC Power Cord Part Numbers

Attached Cords

240 Volt Single Phase Systems - High power generators with power ratings above 2600W use permanently attached power cords.

CAUTION
The power cord is equipped with a three-prong, grounded-type plug for your safety. Whenever a two-slot receptacle is encountered, we strongly recommend that it is replaced with a properly grounded three-lead receptacle.

Have a qualified electrician do the replacement in accordance with the National Electrical Code and local codes and ordinances. DO NOT cut off the power cord grounding prong or alter the plug in any way.

Optional Plugs Available

NEMA L6-30P
Dukane part number 570-296

Figure 2-1 North American Plug

IEC 60309 (Sleeve 332P6)
Dukane part number 570-301

Figure 2-2 International Plug
No Cords

Three-Phase Systems - High power 380/480 VAC Three-Phase generators do not include a AC line cord and must be directly wired. It is recommended that the AC cord wires be stranded.

The AC terminal connector has four terminals labeled L1, L2, L3 and N (GND). The three different phase wires get attached to L1, L2 and L3. The terminal labeled “N” must be connected to the ground wire. Insert the AC wire into the side hole of the terminal and move the white terminal lever completely down facing the terminal hole.

Figure 2-3 shows the AC strain relief connector used to secure the power cord. To secure a power cable, remove the four black hex screws to remove the cord mounting plate. Then unscrew the silver cap and place it onto the power cable. The cable is then inserted into the connector and the cap is screwed back onto the connector to secure the cable firmly. Leave enough cable on the back side of the cable connector to insert the cable wires into the AC input terminals shown in Figure 2-4.

380/480 VAC 3 Phase Line Wiring Information is found on Page 11.

DC Power

Some generators, such as 3 phase 480 VAC versions, have a separate +24 VDC (3 Amps Max.) input that powers the logic portion of the generator. This allows the AC power to be removed without affecting communication and control functions. iQLinQ™, front panel and iQ Explorer II interfaces can modify and monitor all parameters as long as the +24 VDC input is active. At the end of the cable is a white and a black wire. The white wire is connected to the +24 VDC supply and the black wire is connected to the supply ground. The +24 VDC cable must have power in order for the generator to operate.
Wiring Information for 380/480 VAC 3 Phase Lines

Wiring from a 3 Phase Circuit (WYE)
3 Phase 380/480 Volt connections should be wired as shown below.

![Diagram of Wiring a 3 Phase 380/480 Volt Circuit (WYE)](image)

Figure 2-6 Wiring a 3 Phase 380/480 Volt Circuit (WYE)

Wiring from a 3 Phase Circuit (Delta)
3 Phase 380/480 Volt connections should be wired as shown below.

![Diagram of Wiring a 3 Phase 380/480 Volt Circuit (Delta)](image)

Figure 2-7 Wiring a 3 Phase 380/480 Volt Circuit (Delta)

For more details, refer to *Application Note AN524* found on the Dukane website at:
https://documents.dukane.com/AppNote/AN524.pdf
Automation Controlled Probe System

1. Ground the generator chassis using the supplied 14-Gauge wire, and attach it to the grounding stud PE: A in Figure 2-8.

2. Recommended – Ground the probe support. This is a user-supplied 14-Gauge wire. This is required if the probe support does not have a good earth ground through the machine.

3. Input Cable/Output Cable - Attach the automation control cable from the user-supplied automation equipment to the system input HD-26 connector, J5 on the I/O panel: B in Figure 2-8.

4. Attach the high voltage coaxial cable from the probe to the ultrasound output connector J1: C in Figure 2-8.

5. Connect the AC power cord to the generator IEC power inlet connector, and plug the other end into an approved AC outlet: D in Figure 2-8.

Figure 2-8 Generator - Bottom View (Vertical Panel Mount Chassis)
RFI Grounding (PE)
In addition to the safety considerations previously mentioned, proper grounding at the generator power cord is essential for the effective suppression of electrical noise or RFI (Radio Frequency Interference). Every ultrasonic generator contains a RFI filter which blocks noise on the AC power line from entering the system control circuitry. This filter also prevents ultrasonic frequency noise from being fed back into the AC power line. In order for the RFI filter to operate properly, it is necessary to correctly ground the system. Run a grounding wire from the grounding stud PE connection to the nearest grounded metal pipe or equivalent earth ground, and secure it with a ground clamp.

See Figure 2-8 on Page 12 for the location of the PE stud.

Proper Handling of Cable Slack

Coil Extra Slack
When taking up slack in cables, the extra length should be coiled up as shown in Figure 2-9 rather than folded as shown in Figure 2-10.

Avoid Excessive Bending
Avoid excessive tension and bends on cables. Cables should be routed so that there are no abrupt bends in the cables, especially near their connectors.

NOTE
Cables shown in the two figures below are representative samples. If cables have slack, coil them rather than fold them.
This page intentionally left blank
SECTION 3

Standard Connections

Bottom Panel Layout Overview 17

AC Power Inlet Panel 17
 Chassis Grounding Stud 17
 IEC AC Power Inlet Connector 18
 Power Switch/Circuit Breaker 18

System Inputs/Outputs Connector 18
 System Inputs/Outputs Signal Descriptions 19

Ultrasound Output Connector 23

EtherNet/IP Port Connector 24

USB Port Connector 24

iQ CommanderTM 25
Bottom Panel Layout Overview

This section provides an overview of the generator rear panel layout, which includes panel areas dedicated to various standard system functions and options that are available. Figure 3-1 illustrates the panel layout.

![Generator Bottom Panel Diagram]

Figure 3-1 Generator Bottom Panel

- **A** IEC Power Inlet Connector – Attaches to an IEC style power cord.
- **B** Power Switch – Circuit Breaker – Used to switch system power ON and OFF.
- **C** Chassis Grounding Stud – Chassis connection for a protective earth ground.
- **D** System Input/Output Connector – Connections for system control input signals and system status output signals.
- **E** Ultrasound Output Connector – Coaxial high voltage connection to ultrasonic stack.
- **F** Configuration Port Connector – Digital control port to modify system parameters.
- **G** EtherNet/IP Connector – Provides for communication between the iQ generator and an automation network.
- **H** Multi-Point Control Connector - Used to connect an MPC module.
- **I** An option module can be installed here.

AC Power Inlet Panel

The standard AC power inlet panel is described in this section.

Chassis Grounding Stud

The chassis grounding stud is used to attach a protective earth ground to the generator. This will aid in the suppression of electrical interference or radio frequency interference (RFI) that is common in an industrial environment. The chassis ground stud is **C** in Figure 3-1. Proper system grounding is discussed in Section 2.
IEC AC Power Inlet Connector
The IEC AC power inlet connector mounted on the system AC power inlet panel requires a properly configured IEC compliant power cord, which enables worldwide system operation by simply changing the power cord.

This system includes a 16/20 amp rated IEC inlet connector. Single phase 3600W/5000W systems include a non-detachable power cord.

An appropriately rated power cord must be securely attached to the welding system’s IEC inlet connector. If the correct power cord configuration is not included with the system for the local AC power outlet at your location, an appropriate IEC power cord should be available from a local electrical parts supplier.

Power Switch/Circuit Breaker
The power switch/circuit breaker has a rocker type actuator switch that will activate or deactivate the AC power to the system. The power ON position is marked with the internationally recognized I symbol, the power OFF position is marked with the 0 symbol. This power switch also integrates an appropriately sized over-current protection circuit breaker function in the generator.

If an over-current condition trips the circuit breaker, it will automatically switch to the OFF position. If the overload current that caused the circuit breaker to trip is due to a transient condition, the circuit breaker can be reset by switching the actuator back to the ON position. If when resetting the circuit breaker after it has tripped, it immediately trips again, there is likely an internal system malfunction, and the generator will require service.

Do not repeatedly try to reset the circuit breaker. If it trips, this will only cause more damage to the generator.

SYSTEM INPUTS/OUTPUTS CONNECTOR

System Inputs/Outputs Connector (J5)

The SYSTEM INPUTS/OUTPUTS connector mounted on the system I/O panel includes connections for all of the basic system control input and output signals that will typically be associated with an automated control system. The cable attached to this connector includes all of the available system control signals, which will be controlled by an output card or output port on the automation controller.

The user can determine which signals to use for each particular welding application, but there must be at least two connections to this connector or the generator will always be in an E-STOP condition. All of the I/O signals on this connector are electrically isolated (signals are NOT referenced to chassis ground). Inputs are activated when there is a 24 VDC difference between the input pin and the Input Common pin. The electrically isolated I/O signals can be activated/monitored from an automation controller with either sinking (NPN) or sourcing (PNP) I/O depending upon how the isolated common connection is terminated. All inputs sink or source 10mA of current from a 24 VDC power supply. The total output current cannot exceed 500mA when using the +22VDC generator output (pin 1). If an external supply is used the maximum current for each output is 400mA.

Note that a simple switch closure (relay contact) connected to a control input can not activate the input without adding an external power supply to power the input. Adding jumper connections to pins available on the System Inputs connector, can configure switch closure inputs to operate referenced to generator chassis ground (non-isolated), without adding a separate power supply, if desired.

Refer to **Application Note AN525** found on the Dukane website at: https://documents.dukane.com/AppNote/AN525.pdf for detailed wiring diagrams of example applications.

The SYSTEM INPUTS/OUTPUTS connector (J5), as shown in Figure 3-2, is a HD-26F (high density D-subminiature 26 circuit female) connector. Table 3-I on page 22 lists the signal names and descriptions, with detailed descriptions below. The wire color coding for the system input cable is listed in Table 3-I, to assist with custom automation system wiring and assembly.

![Figure 3-2 J5 System Inputs/Outputs Connector](image-url)
System Inputs/Outputs Signal Descriptions

Pin 1 (+22VDC)
This pin can supply +22VDC at up to 500mA to power the user’s automation controls.

Pin 2 (Power Gnd)
Pin 2 is the +22VDC return and is tied to the system chassis ground.

Pin 3 (E-STOP Output)
Refer to application note AN525 for E-STOP wiring. https://documents.dukane.com/AppNote/AN525.pdf

Pin 4 (E-STOP Input)
Refer to application note AN525 for E-STOP wiring. https://documents.dukane.com/AppNote/AN525.pdf

Pin 5 (Remote Setup Selection Bit 0 Input)
Pin 5 is a programmable input that defaults to the Remote Setup Selection Bit 0, which is the least significant bit used to select different welding setups with an automation control system. This input is also used to select different channels when a Multi-Point Controller (MPC) module is connected to J2.

Pin 6 (Remote Setup Selection Bit 1 Input)
Pin 6 is a programmable input that defaults to the Remote Setup Selection Bit 1, which is the second least significant bit used to select different welding setups with an automation control system. This input is also used to select different channels when a Multi-Point Controller (MPC) module is connected to J2.

Pin 7 (Remote Setup Selection Bit 2 Input)
Pin 7 is a programmable input that defaults to the Remote Setup Selection Bit 2, which is the third least significant bit used to select different welding setups with an automation control system. This input is also used to select different channels when a Multi-Point Controller (MPC) module is connected to J2.

Pin 8 (Remote Setup Selection Bit 3 Input)
Pin 8 is a programmable input that defaults to the Remote Setup Selection Bit 3, which is the most significant bit used to select different welding setups with an automation control system. This input is also used to select a different channels when a Multi-Point Controller (MPC) module is connected to J2.

Pin 9 (Automation Cycle Stop Input)
Pin 9 is a programmable input that defaults to an input control signal that when enabled, can be used by the automation control system as a redundant signal to shut the ultrasound output off.

Pin 10 (Front Panel Lockout Input)
Pin 10 is not applicable since this model doesn’t have a user interface.

Pin 11 (Isolated Input Common)
Pin 11 is electrically isolated from chassis ground. Using isolated sourcing (PNP) output drivers, this common line would be connected to isolated ground potential. Using isolated sinking (NPN) output drivers, this common line would be connected to the isolated positive supply voltage output. For correct operation of inputs it is critical that this pin is connected to either isolated ground or positive supply (See AN525 for more information).

Pin 12 (Ultrasound Activation/Cycle Start Input)
Pin 12 is used to activate the generator ultrasound output. Activation of this control input will switch the ultrasound output ON, and deactivating this signal will switch ultrasound OFF. This input signal will also function as a cycle start input, where the ultrasound activation and timing are completely under the control of the process controller. Depending on the welding process controller setup, this input signal could be activated momentarily to start a welding cycle.

Pin 13 (Isolated Ultrasound Common)
Pin 13 is the common connection for Pin 12 (Ultrasound Activation/Cycle Start Input). Pin 13 is electrically isolated from chassis ground. Using isolated sourcing (PNP) output drivers, this common line would be connected to isolated ground potential. Using isolated sinking (NPN) output drivers, this common line would be connected to the isolated positive supply voltage output. For correct operation of the Ultrasound Activation/Cycle Start input it is critical that this pin is connected to either isolated ground or positive supply.

Continued
Pin 14 (Analog Input (0-10 VDC))
Pin 14 is an analog input used when connecting a distance encoder. An encoder is used when using the weld methods DISTANCE or POSITION. When using either of these weld methods, it is also recommended using Dukane’s Trigger by Power feature. This input is configured using the iQ Commander™ software. Dukane recommends using the MPS series analog encoder made by SICK or equivalent. See Figure 3-3 for wiring information.

Pin 15 (Analog Input (0-10 VDC))
Pin 15 is an analog input used to remotely control the generator amplitude setting. The input voltage range defaults to 2-10 VDC with 2 volts representing a 20% amplitude setting and 10 VDC representing a 100% setting. This input is active when “Use Remote Analog Amplitude” is configured using the iQ Commander™ software.

Pin 16 (Analog Ground)
Pin 16 is the signal common (ground) connection for all of the analog signals (on Pins 14, 15, 17, and 18). This signal common pin is connected to system chassis ground and is not isolated from the generator chassis. This is an analog signal ground connection. Do not connect anything to this ground connection, except the wiring to the inputs/outputs of the analog devices.

Pin 17 (Analog Power Output (0-10 VDC))
Pin 17 is an analog output signal used to monitor the power output from the welding system. The scaling on this output signal is as shown below:
1 Watt = 0.001 VDC (1mV per Watt)
Example: 20kHz system measures 0.525 VDC on Power Monitor Output = 525 Watts

Pin 18 (Analog Amplitude Output (0-10 VDC))
Pin 18 is an analog output signal used to monitor the system amplitude setting. The scaling on this output signal is 100% amplitude = 10.0 VDC, or 0.1 VDC per 1% amplitude. Using this monitor output, the control system can verify that the amplitude is set to the expected programmed amplitude level.

Pin 19 (Ultrasound Status Output)
Pin 19 is a programmable output that defaults to a digital output that activates when the system is delivering ultrasonic power to the load attached to the ultrasound output connector. This output will be an open circuit when the ultrasound output is off.

Pin 20 (Any Fault Status Output)
Pin 20 is a programmable output that defaults to a digital output that activates whenever any fault condition is detected that terminates/inhibits ultrasound output and normal system operation. This output will be an open circuit when no system fault conditions are detected. Any Fault output remains active until cleared by the System Latch Reset input or by the start of the next weld cycle. Generator faults that will activate the Any Fault output:
- Overload (Average, Peak, Frequency, Over Voltage)
- Over Temperature Fault
- System Power Fault

Pin 21 (Overload Status Output)
Pin 21 is a programmable output that defaults to a digital output that activates whenever any overload condition is tripped. Activation of the overload status output signal could be caused by an Average, Peak Frequency, or Over Voltage overload condition. After the overload status output activates, it will remain active until cleared by the System Latch Reset input or by the start of the next weld cycle. This output will be an open circuit when no overload conditions have been detected.

Pin 22 (Bad Part Status Output)
Pin 22 is a programmable output that defaults to a digital status output that activates, either momentarily or until the start of the next welding cycle, when the welding parameters recorded during the previous welding cycle are outside of the programmed bad part limits. This output will be an open circuit when a bad part has not been detected.

Continued
Pin 23 (Good Part Status Output)

Pin 23 is a programmable output that defaults to a digital status output that activates, either momentarily or until the start of the next welding cycle, when the welding parameters recorded during the previous welding cycle do not exceed the programmed suspect or bad part limits. This output will be an open circuit after a welding cycle when either a suspect or bad part has been detected.

Pin 24 (Ready Status Output)

Pin 24 is a programmable output. This status output signal will activate only when the system is ready to activate ultrasound or begin a weld cycle. Pin 24 is a digital status output that activates when a weld processing cycle is completed and the welding process control system is ready to start the next welding cycle. This output will be an open circuit when the welding process controller determines that the next welding cycle cannot be started. This includes system faults or E-STOP active, but not a process fault like Overload.

Pin 25 (MPC Ready Status Output)

Pin 25 is a programmable output. This status output signal will activate only when an MPC module is connected to the generator. It is a digital status output that activates when the MPC controller is ready to start the next MPC welding cycle. This output will be an open circuit when the MPC system is not ready to start an MPC weld cycle. Any changes to the probe selection control bits will not be acted on until the completion of the current weld cycle. This status output signal will also be open (MPC NOT READY) if a fault condition is detected inside the MPC module. If this status output will not activate, check for a red fault status indication, the SYSTEM STATUS LED, on the front of the MPC module.

Pin 26 (Isolated Output Common)

Pin 26 is electrically isolated from chassis ground. For isolated sourcing (PNP) inputs, this common line would be connected to isolated ground potential. Using isolated sinking (NPN) output drivers, this common line would be connected to the isolated positive supply voltage output.

Figure 3-3 J5 Pin 14 Encoder Wiring Information
Notes:
1. The descriptions shown are for the default I/O settings. Almost all Inputs are programmable to other input functions and all outputs to other output functions. The exception is the ULTRASOUND ACTIVATION / CYCLE START INPUT which cannot be programmed to another function.
2. Connector Input pins 5 through 10 can be re-assigned from their default setting to be System Latch Reset.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J5-1</td>
<td>BLK/RED</td>
<td>+22VDC CURRENT LIMITED POWER SUPPLY (500mA MAX)</td>
</tr>
<tr>
<td>J5-2</td>
<td>RED/BLK</td>
<td>+22VDC RETURN (iQ CHASSIS GROUND)</td>
</tr>
<tr>
<td>J5-3</td>
<td>BLK/WHT</td>
<td>E-STOP OUTPUT</td>
</tr>
<tr>
<td>J5-4</td>
<td>WHT/BLK</td>
<td>E-STOP INPUT</td>
</tr>
<tr>
<td>J5-5</td>
<td>BLK/GRN</td>
<td>REMOTE SETUP SELECTION BIT 0 INPUT</td>
</tr>
<tr>
<td>J5-6</td>
<td>GRN/BLK</td>
<td>REMOTE SETUP SELECTION BIT 1 INPUT</td>
</tr>
<tr>
<td>J5-7</td>
<td>BLK/BLU</td>
<td>REMOTE SETUP SELECTION BIT 2 INPUT</td>
</tr>
<tr>
<td>J5-8</td>
<td>BLU/BLK</td>
<td>REMOTE SETUP SELECTION BIT 3 INPUT</td>
</tr>
<tr>
<td>J5-9</td>
<td>BLK/YEL</td>
<td>AUTOMATION CYCLE STOP INPUT</td>
</tr>
<tr>
<td>J5-10</td>
<td>YEL/BLK</td>
<td>FRONT PANEL LOCKOUT INPUT</td>
</tr>
<tr>
<td>J5-11</td>
<td>BLK/BRN</td>
<td>ISOLATED INPUT COMMON</td>
</tr>
<tr>
<td>J5-12</td>
<td>BRN/BLK</td>
<td>ULTRASOUND ACTIVATION/CYCLE START INPUT</td>
</tr>
<tr>
<td>J5-13</td>
<td>BLK/ORN</td>
<td>ISOLATED ULTRASOUND COMMON</td>
</tr>
<tr>
<td>J5-14</td>
<td>ORN/BLK</td>
<td>ANALOG DISTANCE INPUT (0-10VDC)</td>
</tr>
<tr>
<td>J5-15</td>
<td>RED/WHT</td>
<td>ANALOG AMPLITUDE INPUT (0-10VDC)</td>
</tr>
<tr>
<td>J5-16</td>
<td>WHT/RED</td>
<td>ANALOG GROUND</td>
</tr>
<tr>
<td>J5-17</td>
<td>RED/GRN</td>
<td>ANALOG POWER OUTPUT (0-10VDC)</td>
</tr>
<tr>
<td>J5-18</td>
<td>GRN/RED</td>
<td>ANALOG AMPLITUDE OUTPUT (0-10VDC)</td>
</tr>
<tr>
<td>J5-19</td>
<td>RED/BLU</td>
<td>ULTRASOUND STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-20</td>
<td>BLU/RED</td>
<td>ANY FAULT STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-21</td>
<td>RED/YEL</td>
<td>OVERLOAD STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-22</td>
<td>YEL/RED</td>
<td>BAD PART STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-23</td>
<td>RED/BRN</td>
<td>GOOD PART STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-24</td>
<td>BRN/RED</td>
<td>READY STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-25</td>
<td>RED/ORN</td>
<td>MPC READY STATUS OUTPUT</td>
</tr>
<tr>
<td>J5-26</td>
<td>ORN/RED</td>
<td>ISOLATED OUTPUT COMMON</td>
</tr>
</tbody>
</table>

Table 3-I System Input/Output Connector Signals
Ultrasound Output Connector (J1)
The ultrasound output connector used with all standard generators is a high voltage (5000V) coaxial style SHV-BNC connector. This connector provides superior shielding of electrical noise, compared to other types of connectors. The ultrasound output connector mates with fully shielded coaxial ultrasound cables that are secured with a simple and reliable quarter-turn bayonet style attachment mechanism.

CAUTION
Ultrasound Output Connector
The ultrasound output connector used with all standard generators is a high voltage (5000V) coaxial style SHV-BNC connector. This connector provides superior shielding of electrical noise, compared to other types of connectors. The ultrasound output connector mates with fully shielded coaxial ultrasound cables that are secured with a simple and reliable quarter-turn bayonet style attachment mechanism.

The ultrasonic output from this connector (that drives the attached ultrasonic load) is a very high AC voltage. At high power levels this can exceed 4 amps of current and must be securely terminated via the ultrasound cable for safe operation. Use original equipment ultrasound cables for safe and reliable system operation. Improperly assembled ultrasound cables can result in high voltage arcing and will destroy the ultrasound connectors.

Do not use the generator if there is any evidence arcing (black carbon deposits) on either the ultrasound output connector or the ultrasonic cable connectors.
EtherNet/IP Port Connector (J9)
The EtherNet/IP or Modbus TCP/IP connector allows the iQ generator to connect to an EtherNet/IP or Modbus TCP/IP network. This port is used for Dukane’s iQLinQ™ communication protocols. Refer to section 4 for additional iQLinQ™ information.

USB Port Connector (J3)
Connect a Windows PC to this port using the included USB cable in order to use Dukane’s PC interface tool, iQ Commander™. This tool works with all iQ AiM™ power supplies and allows the user to easily perform field firmware updates, product setup, parameter configuration and system diagnostics along with other functions.
iQ Commander™

This Windows based software, connected via a standard Type A to Type B (Dukane part number 200-1906) USB cable, can be used to configure and monitor the iQ AiM series generators. One of the many features is to set a IP address for a communication protocol.

Below is a link to download the software:
https://update.dukane.com

To install iQ Commander™

1. Download the installation file from (http://update.dukane.com/) and save to the desired location on the PC.
2. Double-click on the installation file.
3. Once prompted, click on “Next >” on the “Welcome to the InstallShield Wizard for iQ Commander” page. The executable will start the installation process.
4. When the progress bar is nearly full, a new window will appear asking to install the FTDI CDM Drivers. This window may appear behind the iQ Commander™ installation window. If the FTDI CDM Driver window is not visible, move the iQ Commander™ installation window to the side to see the FTDI CDM Drivers installation window.
5. On the FTDI CDM Drivers installation window, click on “Extract”, “Next >”, accept the agreement, “Next >“, and then “Finish” to install the first set of FTDI drivers.
6. Another window will pop up asking to install another set of FTDI CDM Drivers. Repeat step 5 to install the second set of drivers.
7. Once the drivers are installed, Click on “Finish” to complete the process. The user can connect a USB cable from the PC to the AiM generator and start the program.

Operations that can be done via iQ Commander™

1. Update the iQ AiM generator firmware.
2. Test the ultrasonic stack.
3. Scan an ultrasonic stack to determine the optimal Free Run Frequency.
4. Weld a part.
5. Select a probe when an MPC module is connected.
6. Set weld method to Time, Energy, Peak Power, Distance, or Position and the associated value in seconds, joules, watts, or millimeters.
7. Configure custom I/O.
9. Enable and set Trigger by Power parameters.
10. Enable and set Hold Time.
11. Enable and set Afterburst delay and duration.
12. Enable checking for Suspect Parts. Set maximum and minimum values for Time, Power, Energy, Distance, and/or Position.
13. Enable checking for Bad Parts. Set maximum and minimum values for Time, Power, Energy, Distance, and/or Position.
14. Configure advanced hardware settings including, Free Run Frequency, Frequency Tracking, Frequency Lock and Hold, and Frequency Limits.

Parameters that can be obtained via iQ Commander™

1. All parameters that are configured via iQ Commander™.
2. Real time data which includes welder state (ultrasound active or not), frequency, power, position, and amplitude.
3. Weld cycle data from previous weld which includes: Cycle Count; Good, Bad, and Suspect Part information; Process Limit setting exceeded or not reached if Bad or Suspect Part checking is enabled; Weld Time; Weld Energy; Peak Power; Weld Distance; Weld Position.
SECTION 4

Standard System Status and Controls

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status LED</td>
<td>29</td>
</tr>
<tr>
<td>Alarms</td>
<td>31</td>
</tr>
<tr>
<td>Multi-Point (MPC) Interface</td>
<td>32</td>
</tr>
<tr>
<td>iQLinQ™</td>
<td>34</td>
</tr>
<tr>
<td>Control Parameters Available via iQLinQ™</td>
<td>34</td>
</tr>
<tr>
<td>Parameters that can be obtained via iQLinQ™</td>
<td>34</td>
</tr>
</tbody>
</table>
Status LED

The Status LED provide operating status for system power, the system operating mode and system output status as described below:

Status LED

STEADY GREEN = Generator is Ready to weld.

BLINKING GREEN = Generator is Not Ready but there isn’t a fault. This can occur during power up while the DC BUS is charging or if an MPC module is connected and it isn’t ready.

ORANGE = In cycle or ultrasound is active.

STEADY YELLOW = Indicates the unit is E-Stopped.

BLINKING YELLOW = This could indicate an incorrect AC line voltage connected to the generator. To operate, the generator needs AC line voltage to be within this range: For “a 240V” model a minimum 190 V AC; maximum 260 V AC. For a “U” model a minimum 90 V AC; maximum 260 V AC. If this range is not maintained, a line voltage fault will inhibit system operation, and the Status LED will blink yellow. If the AC Line voltage is within the valid range, and the fault cannot be cleared by cycling power to the generator, it should be returned for service.

BLINKING YELLOW TO RED = Hardware Fault. When this fault occurs the generator needs to be sent to Dukane for repair. STEADY RED = Average Overload Alarm. The output power has exceeded the rated power of the generator model. This fault inhibits the ultrasound output when it occurs, but will automatically reset when the next ultrasound activation signal begins.

BLINKING RED = Peak Overload Alarm. The generator output current has exceeded it’s safe operating level and has terminated the ultrasound output. Will automatically reset when the next ultrasound activation signal begins.

NOTE

A welding cycle cannot be started when the generator is in E-Stop because this blocks the ultrasound output.
STEADY BLUE = Frequency Overload Alarm 1. The generator was unable to find the stacks frequency by twice the time of the Ramp Up setting. This fault inhibits the ultrasound output when it occurs, but will automatically reset when the next ultrasound activation signal begins.

BLINKING BLUE = Frequency Overload Alarm 3. There was excessive operating frequency drift due to heating of the stack. The operating frequency is “far” away from the Free Running Frequency. This fault inhibits the ultrasound output when it occurs, but will automatically reset when the next ultrasound activation signal begins.

STEADY PURPLE = Invalid Auto in. This can occur if the ultrasound activate or cycle start input is held after a cycle has finished or if a cycle start signal has too much bounce.

BLINKING PURPLE = Cycle Start Reject. This occurs when the ultrasound activate or cycle start are given when a setup is invalid. (example: Weld Time set to 0.000s) or the generator is not ready.

BLINKING PURPLE TO GREEN = Invalid MPC Probe selection. This occurs when an invalid probe is selected on an MPC (example: Probe 5 is selected on a 4-Probe MPC). This fault will force the generator out of ready.

STEADY WHITE = Indicates an Over Temperature Alarm has occurred. If an over temperature condition is the cause of the fault, the fault condition will automatically reset when the system cools.

Some system fault conditions will reset automatically. Most other system alarm conditions will not reset. In those cases the generator needs servicing.

NOTE
See Figure 4-1 on page 29 for a picture of the Status LED.
ALARMS

Terminology: Alarm refers to any fault, or error the generator might produce.

Determine alarm types can be determined by using the color code of the Status LED or by using the iQ Commander™ software.

Table 4-I gives general reference information for each alarm condition.

<table>
<thead>
<tr>
<th>Alarms</th>
<th>U100</th>
<th>Configuration Alarm (The default setup may be corrupted, the model number does not match the generators installed assemblies, the Serial Number is incorrect or missing.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U104</td>
<td>Frequency Overload Alarm 1 (The generator was unable to find the stacks frequency by twice the time of the Ramp Up setting.)</td>
</tr>
<tr>
<td></td>
<td>U106</td>
<td>Peak Overload Alarm (The generators output current has exceeded it’s safe operating level and has terminated the ultrasound output.)</td>
</tr>
<tr>
<td></td>
<td>U108</td>
<td>Average Overload Alarm (The output power has exceeded the rated power of the generator model.)</td>
</tr>
<tr>
<td></td>
<td>U110</td>
<td>Power Not OK Alarm (There is a problem with the AC line voltage.)</td>
</tr>
<tr>
<td></td>
<td>U111</td>
<td>Over Temperature Alarm (Generator has exceeded its safe operating temperature limit.)</td>
</tr>
<tr>
<td></td>
<td>U112</td>
<td>Frequency Overload Alarm 3 (There was excessive operating frequency drift due to heating of the stack. The operating frequency is “far” away from the Free Running Frequency.)</td>
</tr>
<tr>
<td></td>
<td>U116</td>
<td>Ultrasound Voltage Overload (The actual transducer voltage exceeded the maximum expected value at 100% amplitude.)</td>
</tr>
<tr>
<td>Initiate Alarm</td>
<td>U302</td>
<td>Ultrasound Activation Input Activated at End of Cycle</td>
</tr>
<tr>
<td></td>
<td>U308</td>
<td>Generator Not Ready (The generator initialization process is not complete. The generator is not ready to activate the Ultrasound output. The Automation Cycle Stop input is activated while activating the Ultrasound Activation input.)</td>
</tr>
<tr>
<td>Process Alarm</td>
<td>U401</td>
<td>Weld Time Set to Zero</td>
</tr>
<tr>
<td></td>
<td>U402</td>
<td>Weld Power Set to Zero</td>
</tr>
<tr>
<td></td>
<td>U403</td>
<td>Weld Energy Set to Zero</td>
</tr>
<tr>
<td></td>
<td>U404</td>
<td>Weld Distance Set to Zero</td>
</tr>
<tr>
<td></td>
<td>U405</td>
<td>Weld Position Set to Zero</td>
</tr>
<tr>
<td></td>
<td>U406</td>
<td>Max Trigger Time Set to Zero</td>
</tr>
<tr>
<td></td>
<td>U413</td>
<td>Max Trigger Time Exceeded (The trigger did not occur within the specified time limit.)</td>
</tr>
</tbody>
</table>

Table 4-I Alarm Messages

NOTE

Go to this web address: https://support.dukane.com/EasyAlarm for more information about the alarm’s cause and remedy.
Multi-Point Control (MPC) Interface

The MPC Interface connector powers and controls an external MPC module. This external module must be purchased in addition to a basic generator for a fully functional MPC system. It can be ordered with a minimum of two probe controls and up to a maximum of 16 probe controls.

MPC Interface Connector (J2)
Connections required for the external MPC module are described below.

- MPC I/O - MPC control/input signals and status output signals are carried in the I/O cable that should already be connected. See Table 4-I on Page 32 for further information.

- MPC INTERFACE - Attach one end of the MPC Interface cable (Dukane # 200-1408-XX) to the MPC connector on the iQ generator panel in Figure 4-2. Connect the other end of the cable to the MPC INTERFACE connector on the right rear of the MPC module.

Figure 4-2 J2 MPC Interface Connector
MPC I/O Connections
Signal names and Pin numbers and the connectors related to the MPC option are shown in the table below. See the pages referred to in the table for more information about the signals.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Setup Bit 0 Input</td>
<td>J5 (Page 19)</td>
</tr>
<tr>
<td>6</td>
<td>Setup Bit 1 Input</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Setup Bit 2 Input</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Setup Bit 3 Input</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>MPC Ready Out</td>
<td>J5 (Page 21)</td>
</tr>
</tbody>
</table>

Table 4-II MPC I/O Connector Signals

MPC Probe Control
When the optional MPC module and MPC I/O are used, the generator has the capability of controlling as many as sixteen compatible probes. One probe can be turned on at a time while the sequence of probe activation is determined by the user’s automation. Table 4-III shows how the setup bit inputs correspond to the probes.

<table>
<thead>
<tr>
<th>MPC I/O</th>
<th>Probe Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2 1 0</td>
<td>Off Off Off Off</td>
</tr>
<tr>
<td></td>
<td>Off Off Off On</td>
</tr>
<tr>
<td></td>
<td>Off Off On Off</td>
</tr>
<tr>
<td></td>
<td>Off Off On On</td>
</tr>
<tr>
<td></td>
<td>Off On Off Off</td>
</tr>
<tr>
<td></td>
<td>Off On Off On</td>
</tr>
<tr>
<td></td>
<td>Off On On Off</td>
</tr>
<tr>
<td></td>
<td>Off On On On</td>
</tr>
<tr>
<td></td>
<td>On Off Off Off</td>
</tr>
<tr>
<td></td>
<td>On Off Off On</td>
</tr>
<tr>
<td></td>
<td>On Off On Off</td>
</tr>
<tr>
<td></td>
<td>On Off On On</td>
</tr>
<tr>
<td></td>
<td>On On Off Off</td>
</tr>
<tr>
<td></td>
<td>On On Off On</td>
</tr>
<tr>
<td></td>
<td>On On On Off</td>
</tr>
<tr>
<td></td>
<td>On On On On</td>
</tr>
</tbody>
</table>

Table 4- III MPC Setup Bit Inputs

CAUTION

Ultrasound Output Connector

The ultrasound output connector used with all standard generators is a high voltage (5000V) coaxial style SHV-BNC connector. This connector provides superior shielding of electrical noise, compared to other types of connectors. The ultrasound output connector mates with fully shielded coaxial ultrasound cables that are secured with a simple and reliable quarter-turn bayonet style attachment mechanism.

The ultrasonic output from this connector (that drives the attached ultrasonic load) is a very high AC voltage. At high power levels this can exceed 4 amps of current and must be securely terminated via the ultrasound cable for safe operation. Use original equipment ultrasound cables for safe and reliable system operation. Improperly assembled ultrasound cables can result in high voltage arcing and will destroy the ultrasound connectors.

Do not use the generator if there is any evidence arcing (black carbon deposits) on either the ultrasound output connector or the ultrasonic cable connectors.
iQLinQ™

iQLinQ™ communication options allow automated systems to monitor and change settings in **iQ** generators. These options provide machine builders the ability to integrate the generator into an electrical cabinet and to use the machine’s HMI to program or monitor weld settings.

All Dukane **iQ AiM™** generators include **iQLinQ™** EtherNet/IP and Modbus TCP/IP communication protocol support. Using one of these protocols avoids adding expensive analog cards into PLC racks. **iQLinQ™** is available for PROFIBUS, PowerLink, Profinet, EtherCAT, and CC-Link with the optional ANYBUS module.

iQLinQ™ templates are available to provide complete ladder logic and HMI screens that can be dropped into Allen Bradley (RSLogix 5000; Studio 5000 Logix Designer; Factory View Studio ME), Siemens (TIA Portal), and B&R (Automation Studio) PLC projects.

Contact your local Dukane representative for more information about the **iQLinQ™** options.

iQLinQ™

The **iQLinQ™** allows the **iQ** generator to connect to an industrial network.

Control Parameters available via iQLinQ™

1. Set weld method to Time, Energy, Peak Power, Distance, and/or Position. Set associated values in seconds, joules, watts, or millimeters/inches.
2. Set Amplitude, Ramp Up Time, and Ramp Down Time.
3. Enable and set Trigger by Power or Trigger By Position parameters.
4. Enable and set Hold time.
5. Enable and set Afterburst delay and duration.
6. Enable checking for Suspect Parts. Set maximum and minimum values for Time, Power Energy, Distance, and/or position.
7. Enable checking for Bad Parts. Set maximum and minimum values for Time, Power, Energy, Distance, and/or Position.
8. Configure advanced hardware settings including Frequency Tracking, Free Run Frequency, Frequency Lock and Hold, and Frequency limits.

Parameters that can be obtained via iQLinQ™

1. All parameters that are configured via **iQLinQ™**.
2. Real time data which includes welder state (ultrasound active or not), frequency, power, amplitude, and position.
3. Weld cycle data from previous weld which includes:
 - Cycle Count
 - Good, Bad, and Suspect Part information
 - Process Limit setting exceeded or not reached if Bad or Suspect Part checking is enabled
 - Weld Time
 - Weld Energy
 - Peak Power
 - Weld Distance
 - Weld End Position

For information on how to control and/or monitor specific parameters, **iQ Generator iQLinQ™ Communication and Control documentation** is available.

Signing a non-disclosure agreement is required to obtain this documentation.

ETHERNET/IP or MODBUS TCP/IP CONNECTOR

OPTIONAL ANYBUS MODULE

Figure 4-3 J9 EtherNet/IP or Modbus Connector J6 Optional ANYBUS Module
SECTION 5

Contacting Dukane
This page intentionally left blank
Contacting Dukane

Identify Equipment

When contacting Dukane about a service–related problem, be prepared to give the following information:

• Model number, line voltage and serial number
• Alarm/Fault indicators from the display
• Software version (Press INFO. With selection indicators at System Information, press ENTER to get this data.)
• Problem description and steps taken to resolve it

Many problems can be solved over the telephone, so it is best to call from a telephone located near the equipment.

Intelligent Assembly Solutions

Mailing Address: Dukane
2900 Dukane Drive
St. Charles, IL 60174 USA

Phone: (630) 797–4900

E-mail: ussales@dukane.com

Fax:
Main (630) 797–4949
Service & Parts (630) 584–0796

Website

The website has information about our products, processes, solutions, and technical data. Downloads are available for many kinds of literature. This is our main web address:

www.dukane.com

You can locate your local representative at:

www.dukane.com/contact-us/
This page intentionally left blank
SECTION 6

Specifications

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawings</td>
<td>41</td>
</tr>
<tr>
<td>Operating Environment</td>
<td>46</td>
</tr>
<tr>
<td>AC Power Requirements</td>
<td>47</td>
</tr>
<tr>
<td>Interpreting the Model Number</td>
<td>48</td>
</tr>
<tr>
<td>Regulatory Agency Compliance</td>
<td>49</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Figure 6-1 Vertical 2600 watts and below Generator (Drawing 400-2510)
Figure 6-2 Horizontal 2600 watts and below Single Phase Generator (Drawing 400-2674)
Figure 6-3 Horizontal/Vertical 3600 watt Single Phase Generator (Drawing 400-2561)
Figure 6-4 Vertical 3600 and 5000 watt Single Phase Generator (Drawing 400-2514)
Figure 6-5 Horizontal/Vertical 5000 watt Single Phase Generator (Drawing 400-2558)
Operating Environment

Operate the generator within these guidelines:

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>40°F to 100°F (+4°C to +38°C)</td>
</tr>
<tr>
<td>Air Particulates</td>
<td>Keep the equipment dry</td>
</tr>
<tr>
<td></td>
<td>Minimize exposure to moisture, dust, dirt, smoke and mold</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% Non-condensing @ +5°C to +30°C</td>
</tr>
</tbody>
</table>

Storage guidelines (generator is not operating):

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-4°F to 158°F (-20°C to +70°C)</td>
</tr>
<tr>
<td>Air Particulates</td>
<td>Keep the equipment dry</td>
</tr>
<tr>
<td></td>
<td>Minimize exposure to moisture, dust, smoke and mold</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% Non-condensing @ 0°C to +30°C</td>
</tr>
</tbody>
</table>
Generator AC Power Requirements

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Model Number</th>
<th>Nominal AC Volt</th>
<th>Nominal AC Hz</th>
<th>Normal AC Output</th>
<th>Normal AC Output (Amps)</th>
<th>Overload AC Output</th>
<th>Overload AC Output (Amps)</th>
<th>Model Number</th>
<th>Generator Power Requirements (Watts)</th>
<th>Operating Frequency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15kHz</td>
<td>15XX360-4P-XX</td>
<td>380-480</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>40XX1200-4P-XX</td>
<td>40kHz</td>
<td></td>
</tr>
<tr>
<td>15kHz</td>
<td>15XX500-4P-XX</td>
<td>380-480</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>25XX1200-4P-XX</td>
<td>25kHz</td>
<td></td>
</tr>
<tr>
<td>15kHz</td>
<td>15XX360-2P-XX</td>
<td>200-240</td>
<td>15A</td>
<td>1300</td>
<td>1300</td>
<td>15A</td>
<td>15A</td>
<td>1300</td>
<td>20XX1300-2P-XX</td>
<td>20kHz</td>
<td></td>
</tr>
<tr>
<td>15kHz</td>
<td>15XX500-2P-XX</td>
<td>200-240</td>
<td>15A</td>
<td>1300</td>
<td>1300</td>
<td>15A</td>
<td>15A</td>
<td>1300</td>
<td>20XX1300-2P-XX</td>
<td>20kHz</td>
<td></td>
</tr>
<tr>
<td>20kHz</td>
<td>20XX300-4P-XX</td>
<td>380-480</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>50XX1200-4P-XX</td>
<td>20kHz</td>
<td></td>
</tr>
<tr>
<td>20kHz</td>
<td>20XX360-4P-XX</td>
<td>380-480</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>35XX1200-4P-XX</td>
<td>25kHz</td>
<td></td>
</tr>
<tr>
<td>20kHz</td>
<td>20XX120-UP-XX</td>
<td>100-240</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>10XX1200-UP-XX</td>
<td>20kHz</td>
<td></td>
</tr>
<tr>
<td>20kHz</td>
<td>20XX180-2P-XX</td>
<td>200-240</td>
<td>15A</td>
<td>1300</td>
<td>1300</td>
<td>15A</td>
<td>15A</td>
<td>1300</td>
<td>20XX180-2P-XX</td>
<td>20kHz</td>
<td></td>
</tr>
<tr>
<td>20kHz</td>
<td>20XX260-2P-XX</td>
<td>200-240</td>
<td>15A</td>
<td>1300</td>
<td>1300</td>
<td>15A</td>
<td>15A</td>
<td>1300</td>
<td>20XX260-2P-XX</td>
<td>20kHz</td>
<td></td>
</tr>
<tr>
<td>25kHz</td>
<td>25XX120-UP-XX</td>
<td>100-240</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>15XX1200-UP-XX</td>
<td>25kHz</td>
<td></td>
</tr>
<tr>
<td>25kHz</td>
<td>25XX200-2P-XX</td>
<td>200-240</td>
<td>15A</td>
<td>1300</td>
<td>1300</td>
<td>15A</td>
<td>15A</td>
<td>1300</td>
<td>20XX200-2P-XX</td>
<td>25kHz</td>
<td></td>
</tr>
<tr>
<td>30kHz</td>
<td>30XX120-UP-XX</td>
<td>100-240</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>15XX1200-UP-XX</td>
<td>30kHz</td>
<td></td>
</tr>
<tr>
<td>30kHz</td>
<td>30XX180-2P-XX</td>
<td>200-240</td>
<td>15A</td>
<td>1300</td>
<td>1300</td>
<td>15A</td>
<td>15A</td>
<td>1300</td>
<td>20XX180-2P-XX</td>
<td>30kHz</td>
<td></td>
</tr>
<tr>
<td>35kHz</td>
<td>35XX120-UP-XX</td>
<td>100-240</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>15XX1200-UP-XX</td>
<td>35kHz</td>
<td></td>
</tr>
<tr>
<td>40kHz</td>
<td>40XX120-UP-XX</td>
<td>100-240</td>
<td>15A</td>
<td>1200</td>
<td>1200</td>
<td>15A</td>
<td>15A</td>
<td>1200</td>
<td>15XX1200-UP-XX</td>
<td>40kHz</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. An X used above in the Model Numbers is a wildcard character meaning any valid character code combination.

2. Maximum current requirement is specified at the minimum nominal AC line voltage and the rated power level.

3. For the 2600 watt model, if the input line voltage is between 160-190V, the output is reduced to 2400 watts.

4. For 380-480 VAC generators, the external +24V power supply that is connected to the +24V terminal is used. This external power supply is required for all 380-480 VAC generator models to ensure proper operation.

5. For 380-480 VAC generators, the external +24V power supply that is connected to the +24V generator input shall be listed or labeled with third party North American marking (UL, CSA, TUV, etc).

The AC line voltage and current needed depends on which generator has been chosen for your system. See the table below.
Interpreting the Model Number

Example System Number Shown Above:

```
C3 P 20 H B 2 6 0 - 2
```

- **C**: System Process Control
- **P**: Power Level
- **20**: Hertz Frequency
- **H**: Waveform
- **B**: Process Mode
- **2 6 0**: Parameter Values
- **-2**: Adjustment Value

AC Line Input

Diagram showing the model number structure and components.

Module installed. The system power cord is listed as separate line on the sales order to match the user’s specific.

System assembly detailed description:

20H260-2P-C3

Dukane Manual Part Number 403-611-02

Figure 6-6 Interpreting the Model Number
Regulatory Agency Compliance

FCC
The generator complies with the following Federal Communications Commission regulations.

CE Marking
This mark on your equipment certifies that it meets the requirements of the EU (European Union) concerning interference causing equipment regulations. CE stands for Conformité Européenne (European Conformity). The equipment complies with the following CE requirements.
- **The EMC Directive 2014/30/EU**
 - EN 61000-6-4:
 - EN 55011
 - EN 61000-6-2:
 - EN61000-4-2
 - EN61000-4-3
 - EN61000-4-4
 - EN61000-4-5
 - EN61000-4-6
 - EN61000-4-8
 - EN61000-4-11
- The Low Voltage Directive 2014/35/EU.
- The Machinery Directive 2006/42/EC.
- EN ISO 12100: Safety of Machinery - General principles of design, risk assessment, and risk reduction.

IP Rating
The *iQ* generator has an IP (International Protection) rating from the IEC (International Electrotechnical Commission).

The rating is IP2X, in compliance with finger-safe industry standards.

UL
The *iQ* generator complies with these standards:
- **Tested to Underwriters Laboratories:**
 - UL 61010–1, IEC 61010-1

 and

 National Standards of Canada:
 - CAN/CSA C22.2 No. 61010–1–12

as verified by TÜV Rheinland.

CAUTION
DO NOT make any modifications to the generator or associated cables as the changes may result in violating one or more regulations under which this equipment is manufactured.
This page intentionally left blank
Dukane chose to become ISO certified in order to demonstrate to our customers our continuing commitment to being a quality vendor. By passing its audit, Dukane can assure you that we have in place a well-defined and systematic approach to quality design, manufacturing, delivery and service. This certificate reinforces Dukane's status as a quality vendor of technology and products.

To achieve ISO certification, you must prove to one of the quality system registrar groups that you meet three requirements:

1. Leadership
2. Involvement

The ISO standards establish a minimum requirement for these requirements and starts transitioning the company from a traditional inspection-oriented quality system to one based on partnership for continuous improvement. This concept is key in that Dukane no longer focuses on inspection, but on individual processes.

Dukane's quality management system is based on the following three objectives:

1. Customer oriented quality. The aim is to improve customer satisfaction.
2. Quality is determined by people. The aim is to improve the internal organization and cooperation between staff members.
3. Quality is a continuous improvement. The aim is to continuously improve the internal organization and the competitive position.

Dukane products are manufactured in ISO registered facilities.

View the Dukane ISO certificate of compliance at: https://www.dukane.com/support/downloads/
Please refer to our website at:

www.dukane.com/contact-us/

to locate your local representative.